

https://thingworx.com/go/ConnectedDevices

Alasdair Allan and Brian Jepson

Connecting Networked
Devices

Prototyping and Scaling IoT
in the Enterprise

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-96404-0

[LSI]

Connecting Networked Devices
by Alasdair Allan and Brian Jepson

Copyright © 2017 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Brian Jepson
Production Editor: Shiny Kalapurakkel
Copyeditor: Jasmine Kwityn
Proofreader: Amanda Kersey

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Panzer

November 2016: First Edition

Revision History for the First Edition
2016-11-10: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Connecting Net‐
worked Devices, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

http://safaribooksonline.com

Table of Contents

Preface. vii

1. Where Does Your Product Sit?. 1
Project Requirements 1
Prioritizing Your Decisions 2
Designing the Minimum Viable Product 3
The Standards Problem 3

2. Starting with One. 7
Know Your Device’s Role 8
Don’t Fall in Love with Your Parts Bin 9
Creating a Bill of Materials 10
Code and Hardware 11
What About the Network? 12

3. Your Developers’ User Experience. 13
The Two Platforms 13
You Won’t Program to the Platform 16
Talking to the Cloud 17

4. The Physical Environment. 19
Physical Environment 19
Enclosures 21
Power Requirements 22
Deep Sleep and Duty Cycle 22
Connectivity 23
Storage 24

v

5. Security Is Your Job. 25
A Unique Security Problem 25
Authentication and Authorization 26
The Internet of Things and the Industrial Internet 26
Broken Firmware 27
Reverse Engineering the Hardware 29

6. Time to Market Versus Common Sense. 33
Off-the-Shelf Components 34
What About the Prototype? 34
Managing Risk 35

7. Conclusions. 37

vi | Table of Contents

Preface

We’re accustomed to yearly, or faster, upgrade cycles. A new phone
each year, a new laptop every couple of years, and each year the slabs
of aluminum, plastic, glass, and silicon get a little bit thinner and
weigh a little bit less. And from that shift, even smaller devices have
begun to appear, and everyday objects are becoming smarter.

Because of this, computing is slowly diffusing into our world. A dec‐
ade from now, everything important will be measured and observed
in real time. But right now almost all of the devices that will one day
will be connected to the network aren’t.

When most people think about big data, they think about it living
out in the cloud. However, at the moment, the amount of data that
lives on systems that aren’t connected to the network, or are unrelia‐
bly connected to the network, vastly outweighs the data that lives in
the cloud. As more smart, connected devices come online that can
push that data to the cloud, all this data which had previously been
locked away will become available.

Right now, this infrastructure is being built, and chances are good
you’re one of the people building it. As you connect networked devi‐
ces—to one another and to the cloud—you’ll need to consider many
factors, including your product’s relationship with its environment,
how your prototyping process considers its constraints, your devel‐
opers’ user experience, and the physical operating environment.
And you’ll do this all while balancing time to market, common
sense, and security.

vii

Products, Platforms, and Strategies
Over the last few years, many companies have introduced platforms
and products designed for the Internet of Things (IoT). These prod‐
ucts often are either just proprietary middleware and services, or are
simply embedded electronics, with or without the addition of a net‐
work connection. Just adding a network connection to an existing
device doesn’t make it part of the Internet of Things.

In an environment that is rapidly changing, and will continue to be
volatile for several more years before best practices, or even just
accepted practices, start to emerge, designing your product will
depend heavily on a number of factors: naturally, the requirements
are important, but there’s also the refresh cycle, time to market,
physical environment, and how the device will connect to the net‐
work. One of the key problems in the current generation of Internet
of Things devices is the refresh cycle problem. Enterprises reap the
benefits of two- to three-year refresh cycles in computers and
mobile phones; with new hardware and software come bug fixes for
security. IoT devices are generally part of systems that are expected
to run for many years, even decades, with minimal intervention
(and minimal opportunity to perform software updates).

The design of your product will be heavily influenced by the typical
refresh cycle in your area of business, and governed not just by the
time to market, but also the amortization of nonrecurring engineer‐
ing costs, and lifetime units sold.

The physical environment into which the product will be placed
must also be taken into account. Computers, and network connec‐
ted devices, no longer live in the server room—they’re out in the
world interacting with dirt, dust, water, and people.

That change in location also changes the way the device must be
powered and connected to the network; in addition, it affects the
options you have available for connecting a networked device and
determines how you will exercise those options.

viii | Preface

CHAPTER 1

Where Does Your Product Sit?

The dot-com revolution happened in part because, for a few thou‐
sand or even just a few hundred dollars, anyone could have an idea
and build a software startup. Today, for the same amount of money,
you can build a business selling goods or software, and both your
product and the process by which you develop it are augmented
because devices and people can communicate and connect across
the globe.

Project Requirements
Everything begins with how users will interact with your device, and
how it will interact with both them and the network. In other words,
where will your product sit in the hierarchy of connected devices?

Local, Edge, or Cloud?
In general, connected devices can be roughly split into three broad
categories: local devices, edge devices, and cloud-connected devices.

Local devices don’t have the capability to reach the Internet, but they
are still connected in a network. This network usually isn’t TCP/IP
based. For instance, both ZigBee and Bluetooth LE devices are good
examples of network-connected things that operate locally rather
than directly connected to the Internet, and illustrate the two types
of local networking. In the case of ZigBee, the device operates in
either mesh or peer-to-peer mode, with packets hopping between
devices until they reach a gateway on the edge of the local network.

1

In the case of Bluetooth LE, the device operates in either paired or
broadcast mode, with messages being picked up directly by a device
on the edge of the network.

Edge devices typically have multiple radios, and operate in both
local and connected modes—for instance, utilizing ZigBee or Blue‐
tooth LE to talk to a local non-TCP/IP network, but also fully sup‐
porting a TCP/IP connection to the outside world. They act as a
bridge, or gateway, between a local network and the outside world,
typically forwarding data received from a local network of sensor
devices to the cloud, or sending commands to a network of actua‐
tors from the cloud.

Cloud devices connect directly to a TCP/IP network, in most cases
using WiFi or cellular, and wired devices also count in this category.
They’re distinct from edge devices in that they typically don’t com‐
municate via a local network to other network-enabled devices. If
they are part of an extended network of smart, connected devices, all
the communication is normally funnelled via the cloud.

Prioritizing Your Decisions
Although it’s tempting to imagine that a single protocol and network
stack will come to dominate the IoT, it is in fact unlikely that this
will happen. The history of the Internet suggests that the IoT will
remain diverse in the protocols and architectures used.

If you want to deploy devices in massive quantities, cost manage‐
ment means it is likely that these devices will have the minimum via‐
ble specification that is required to do the task at hand. The
purchase decisions you make may constrain future options as far as
which protocols are available to you.

It’s possible that some convergence will happen at the highest level
of the protocol stack, with the data exchange formats tending
toward a single standard, while all the underlying transport proto‐
cols remain diverse. This is almost the opposite of the existing digi‐
tal Internet, where a diverse number of low-level networking
protocols have been effectively replaced with TCP/IP, layered on top
by a large number of other higher-level transport protocols and
document standards.

2 | Chapter 1: Where Does Your Product Sit?

Designing the Minimum Viable Product
A minimum viable product (MVP) is a product (rather than a proto‐
type) that you deploy to customers, with the minimum set of fea‐
tures you need to gather information on how it is used so that you
can refine it. Typically, you’d roll out the MVP to a small group of
customers, and for each major set of refinements, expand that
group. In the software world, this approach is popular and success‐
ful because of the relative ease of updating software in a cloud-based
world.

However, the story of hardware development is somewhat different.
While the concept of a minimum viable product still exists and is
useful, building hardware tends to led by design rather than by fea‐
ture. That results in two prototypes being built, a “looks like” and a
“works like” prototype. The “looks like” model, true to its name,
looks like the final product, but has little—or sometimes none—of
the intended functionality. The “works like” prototype behaves like
the final product, but generally bears no outward resemblance to the
final product in terms of industrial design.

Confusing the “looks like” and “works like” prototypes, or mixing
them, leads to what’s commonly referred to as feature-driven design.
For hardware products intended for the IoT, this leads to poor user
interaction with the product. That’s caused by design decisions you
didn’t make, instead offloading design decisions to the user. If you
make these design decisions once, users won’t have to go through
that decision tree every time they use the product.

The Standards Problem
As we alluded to earlier, there is a brewing—if not all-out—stand‐
ards war ongoing in the IoT. There is a great deal of confusion
around protocols at different levels of the networking stack. For
instance, there is a fundamental difference between low-level wire‐
less standards like ZigBee or WiFi, and much higher-level concepts
such as TCP/IP or above that HTTP and “the web” which sits on top
of the TCP/IP networking stack. Above even that are document-
level standards like XML and JSON, and even more conceptually
wooly things such as patterns.

For instance, the concept of RESTful services is effectively a design
pattern built on top of document- and high-level networking

Designing the Minimum Viable Product | 3

protocol standards. It is not in itself fundamental, and is unrelated
to the underlying hardware, at least if the hardware itself is capable
of supporting an implementation of these higher-level protocols.

However, perhaps the greatest standards problem with the IoT is
that, due to constraints in power or computing resources, it is a
mess of competing and incompatible standards at the lowest level.
Factors such as range, data throughput requirements, power
demands, and battery life dictate the choice from a bewildering
array of different wireless standards.

The Big Three
The big three, the most familiar to consumers and to developers, are
Bluetooth, WiFi, and cellular.

The most obvious choice, perhaps even the default choice, for net‐
working an IoT device is the WiFi standard. It offers good data rates,
and reasonable ranges (of the order 150 feet or larger), and means
your device can connect directly to the Internet if needed. However,
WiFi devices with even moderate duty cycles are power hungry.

Bluetooth, especially the low-energy configurations intended for low
data rates and limited duty cycles, is designed for personal (weara‐
ble) devices with limited ranges and accessories. While recent stand‐
ards revisions include support for direct Internet access via
6LoWPAN (IPv6), there is still only limited support that effectively
means that Bluetooth devices are restricted to local, and small, net‐
works spanning (despite manufacturers claims) around 30 or 50
feet. In the shortest-range use cases (a few inches), you should also
be looking at near-field communication (NFC).

Of the three, perhaps the most ubiquitous, with the widest deploy‐
ment and market penetration, is cellular. If your cell phone can get
signal in a location, so can an IoT device with a 2G or 3G module
onboard. Data rates lie somewhere between WiFi and Bluetooth,
with the main advantage being range. Cellular devices can be located
up to 20 miles from a cell tower, and depending on intervening
obstacles, still get reception. However, cellular is both power hungry
and expensive to operate. While GSM may be a good choice for a
gateway device, it’s unlikely to be a good fit for most IoT devices.

4 | Chapter 1: Where Does Your Product Sit?

Mesh Networks
Standards such as ZigBee and Z-Wave fill a niche in the local net‐
working space. While they need a gateway device to talk to the
Internet, both standards have mesh networking capability, so while
individual devices can have between 30- to 300-foot range, the size
of the network is actually only limited by the number of devices
deployed. Both ZigBee and Z-Wave are targeted for low-power
applications with lower data rates.

While ZigBee and Z-Wave have been around for a while, newer IPv6
protocols, such as Thread, which are based around a basket of
standards including 6LowPAN, offer mesh networking and direct
access to the digital Internet so long as IPv6-capable networking
gear is in place. Designed to stand alongside WiFi, IPv6-based pro‐
tocols such as Thread are attempting to address the lack of TCP/IP
at the lowest levels of the IoT, accepting that the high-powered WiFi
standard may be inappropriate for many (if not most) IoT devices.

Wide Area Networks
While cellular (typically GSM or UMTS) is the most popular stan‐
dard used to provide wide area networks (WAN), there exist other
newer standards that attempt to provide this functionality at much
lower costs.

Sigfox uses the ISM radio bands, with typical operational ranges of
up to 30 miles in rural environments and as low as 6 miles or less in
urban environments. Sigfox networks are being rolled out in major
cities across Europe and the United Kingdom. Making use of ultra-
narrow band signaling, it is intended for very low data rates (just 10
to 1,000 bps) but also very low-power deployments (consuming a
factor of 100 less power than cellular).

Other alternatives include Neul, which leverages the small slices of
whitespace spectrum between the allocated TV bands and has a
range of around 6 miles, and perhaps the most well known of the
three, LoRaWAN.

LoRaWAN has a range of up to 3 miles in an urban environment
and perhaps 9 or 10 miles in a suburban environment. Its rates
range from 0.3 kbps up to as high as 50 kbps, and it makes use of
various frequencies, depending on deployment. Much like Sigfox, it
is also optimized for low-power deployments and large (millions of

The Standards Problem | 5

devices) deployments. The first LoRa network with nationwide cov‐
erage was rolled out in June 2016 in the Netherlands by the Dutch
telecoms group KPN.

6 | Chapter 1: Where Does Your Product Sit?

http://bit.ly/2fE22lO
http://bit.ly/2fE22lO

CHAPTER 2

Starting with One

When you’re building a connected device, you’re building for a lot of
different people. But no matter how someone uses your device and
its associated stack of services, your users will fall into one or both of
the following roles:

Users
These are the people who interact directly with the device or its
data. They need the device to be on and available when it’s sup‐
posed to be, and they expect the same for its data.

Developers
Every device needs some degree of integration and ongoing
maintenance. The developers take your device (and its APIs)
and connect it into their internal or customer-facing systems.
They might be full stack hardware developers, or they might
work at one of the levels in the stack: from firmware customiza‐
tion to adding new peripheral devices, on up to developing
cloud analytics to work with the data, and anywhere in between.

A third role—hardware power users—emerges when someone falls
into both of the preceding categories. Hardware power users might
be users 80% of the time, but use scripting or plug-in tools to cus‐
tomize their experience.

Each role needs a different set of affordances and features, and will
have different expectations about response time and access. A user
might need smartphone access to a dashboard that’s updated every
second, but she doesn’t need to access the device’s serial port

7

remotely. A developer might need the ability to push over-the-air
firmware updates to a device, but he doesn’t need to receive notifica‐
tions when it’s time to replace a refrigeration unit that his device is
monitoring.

However, your device has the weight of the world on its shoulders. It
has to support all those scenarios, and look good doing it.

A prototype often starts with a breadboard, some components, a
microcontroller board, and some ideas. It’s tempting to throw every
feature imaginable into the device. But just because something is
possible it doesn’t mean it is compulsory. Adding extra controls or
displays to a product is a classic mistake at this stage of the product
life cycle. It increases the cost of each unit and introduces cognitive
overhead the users and developers must bear.

Over the last few years, we’ve finally reached a point in the software
design world where we’ve figured out that offering choice to the user
isn’t always the best thing to do. More choice isn’t a virtue in and of
itself, and sometimes it can introduce confusion. Every control you
add—to software or hardware—is a design decision you aren’t mak‐
ing, where you’re offloading the design of your interface onto the
user. Make the decision once so your user doesn’t have to make the
decision several times a day.

Know Your Device’s Role
Where does your device sit? What is its role? Edge device or gate‐
way? More and more, the answer is both.

As connected devices are increasingly deployed into every corner of
our environment, the need grows for them to be self-sufficient.
More and more wireless modules, such as those from Espressif and
Nordic, have a microcontroller that can run custom code and inter‐
face directly with sensors over GPIO, I2C, and SPI.

Sensors can also gather a tremendous amount of data. With a low-
bandwidth or limited-data connection such as a cellular connection,
it’s ideal for the device to do as much processing on the data as pos‐
sible before relaying it to the cloud.

As you develop your prototype, you’ll understand its role better.
How much will your device do on its own? Will it just relay raw sen‐
sor readings to a central gateway device? Will it read sensor

8 | Chapter 2: Starting with One

readings, perform some processing, and then relay it to a gateway?
Or is the device itself the gateway, reading sensors, processing data,
and sending it on to the cloud independently?

The answers to those questions will come from the physical (and
software) environment you are deploying in as much as which hard‐
ware choices you make.

Don’t Fall in Love with Your Parts Bin
For the prototype, where you’re just throwing components onto a
breadboard as fast as possible, it’s sometimes convenient to use
whatever you have on hand. That can be a good thing if you’re an
experienced product engineer, and your parts bin consists of things
that you’ve used in other successful projects.

But new components, whether new generations of existing parts, or
entirely new parts, become available quite regularly. When Espressif
introduced the inexpensive ESP8266, it was a big deal for prototyp‐
ers. Here was an inexpensive module ($2 in single-unit quantities)
that not only could be used to add WiFi networking to a prototype
or a device, but could itself be programmed. In many prototypes,
the $2 ESP8266 has enough I/O and processing power to completely
replace both an Arduino and WiFi module. This device came to
attention in mid-2014, and by mid-2016, its use was widespread.

In addition to keeping on top of new and emerging components,
you need to maintain reliable standbys in your parts bin. Because
choices made at the start of engineering design have a tendency to
become set in stone as the later prototypes evolve, you can’t afford to
prototype with a component that has reached end-of-life. Therefore
it’s important, especially if you’re building a hardware product for
the first time, to fill your parts bin with parts that are easy to source.
Readily available parts are more affordable, resulting in a lower bill-
of-materials cost, and can be sourced from multiple manufacturers
if needed, resulting in a more reliable supply.

Several contract manufacturing companies have established parts
catalogs to advise your parts choices. For example, SeeedStudio has
compiled an Open Parts Library (OPL) catalog, which is a collection
of the most commonly used components. If you’re working with
Seeed, using OPL components in your design means that Seeed will

Don’t Fall in Love with Your Parts Bin | 9

https://www.seeedstudio.com/Open-Parts-Library-Catalog-p-1911.html

1 For more information, see Parts.io’s blog post “Improving RiskRank.”
2 See Dragon Innovation Blog’s post “Introducing the Dragon Standard BOM”.

have sufficient stock to fulfill on short lead times, at lower costs than
other components.

Other sites, such as Parts.io, exist to simplify the component discov‐
ery process. Using these types of sites when considering your parts
choice means that you can manage exposure to supply chain risk.
You can get feedback not just on the availability of the part, but also
the life-cycle stage of the component, and variation in cost over time
and between competing suppliers.1

When assessing whether a component should be designed into a
product in the first place, it’s important to consider not just whether
it’s available now, but whether it’ll be available over the entire life
cycle of your product. While some components may only have a sin‐
gle source, you should always try to find a more common substitute.
Supply volatility of components can leave you unable to find a criti‐
cal component, which could lead to your product being retired from
the market early or a costly mid-life-cycle redesign of your product.

Creating a Bill of Materials
You may start most products with a single model, but eventually,
you’ll need to make many. Whether a dozen, one hundred, or one
million, you’re going to need to make more than one.

The critical starting point for mass production is your bill of materi‐
als, which serves as the list of ingredients for building the product.

From the information contained in the bill of materials, it should be
possible to determine the lead time to procure the materials neces‐
sary for production, the manufacturing processes necessary to bring
them together, and the time to manufacture and ship the product.

While most companies understand the importance of the bill of
materials, there is little consistency in format, and that can add fric‐
tion when dealing with contract manufacturers. To combat this,
there have been several attempts2 to produce standard bill-of-
materials templates (e.g., the Dragon Standard BOM4) and, espe‐
cially for first-time product builders, these can be invaluable.

10 | Chapter 2: Starting with One

http://blog.parts.io/improving-riskrank/
http://bit.ly/2eDvsPT
http://parts.io/

Code and Hardware
In recent years, hardware has come to be seen as “software wrapped
in plastic.” While it’s not a popular view with hardware engineers,
these days the code running on your hardware can be just as impor‐
tant if not more so than the hardware itself. Like design, in an age
where all things that are buildable are rapidly copyable, the software
running on your device may prove to be even more important than
the hardware it runs on.

You should also consider the possibility that your code can be used
again and write your code for reusability. If you’re building one
product, it’s likely you may build a second version, or a third. As
such, it’s important to separate the code that talks directly to the
hardware of your device—the dials, sliders, buttons, knobs, and
other physical things—from the code that talks to the network.

With the drop in the cost of computing—both in terms of price and
power consumption—many manufacturers are now basing their
connected devices around relatively powerful processors. A com‐
mon pattern emerging in this space is to have the code that talks to
the hardware running as a separate process from that which imple‐
ments the functionality of the networked device. This code, which
may be written in a much lower-level language than the application
which manages the rest of the connected device, often uses a REST
or other network-level API to talk to the management code.

This means that the bulk of your device code can be written in a
higher-level language, decreasing developer time and increasing
your pool of development talent. But it also means that the manage‐
ment code can expose command and control functionality in just
one place. The same API used by the device’s own hardware can in
turn be exposed by the device’s network interface and used to con‐
trol it from some other network device.

Code and Hardware | 11

What About the Network?
As you develop your prototype, you will make decisions about how
to connect to the network, and how to move data from device to
cloud. If your device is both an edge device and a gateway, and is
connected directly to a WiFi, wired Ethernet, or cellular network,
you’ll be in well-worn territory.

But if you’re not directly connected to a network, and you need to
use a gateway of some sort, you’ll have to decide how that’s handled:

• Are the devices clustered together? Maybe adding Bluetooth or
ZigBee to your gateway and edge devices is the answer.

• Are the devices spread out all over the place? Maybe LoRa or
cellular is the way to go here.

• What is the ratio of gateways to devices? If you have fewer
highly mobile devices, you might be scaling up the number of
gateways rather than the number of devices.

You may start with only one, but you will scale to many. And even
when you’re done with the first, it’s not unreasonable to think that
new versions and new products will soon follow. This chapter
shared some guidance on the trickier parts of the process: making
sure your product is approachable by the different developer and
user roles, understanding your device’s relationship to systems large
and small, the parts that actually go into your device, and the soft‐
ware and network connectivity considerations you need. The next
chapter looks in more detail at the relationship between your device
and its users and developers.

12 | Chapter 2: Starting with One

CHAPTER 3

Your Developers’ User Experience

Chapter 2 talked about reconciling the two main constituencies of
your device: users and developers. This chapter digs down more into
the developer experience and looks at how your prototyping deci‐
sions affect your future developers. A connected device is rarely just
a black box. At a minimum, your customers will need someone to
integrate that device into their system. But as more computational
power comes to the devices you create, there’s more opportunity to
enable customers to customize well beyond the initial feature set
you envisioned for your product.

The Two Platforms
There was a time when, if you wanted to build a connected device,
you’d need to research all the chip vendors, spend hundreds of dol‐
lars on evaluation boards, sign nondisclosure agreements to get
access to SDKs, and then swim upstream into the vendor’s sales fun‐
nel when you needed any kind of guidance developing your proto‐
type.

This old way of doing things was turned on its head with the arrival
of the Arduino, an inexpensive microcontroller board for prototyp‐
ing that allowed anyone with an idea, a modest understanding of
electronics and programming, and motivation to create a connected
networked device.

More than 10 years later, and Arduino will forever be remembered
as the platform that launched the desktop 3D printing revolution.

13

Without Arduino, the creators of 3D printers such as MakerBot,
RepRap Prusa, PrintBot, Ultimaker (and many more) would have
had to roll their own controller boards for their motors. This early
success has validated Arduino as a robust platform for creating con‐
nected devices.

And not too long ago, Arduino was joined by a board with very dif‐
ferent capabilities: the Raspberry Pi. The Pi became the perfect com‐
plement to the Arduino. Where Arduino projects run on the bare-
metal CPU, Raspberry Pi boards come with an operating system,
Linux, Windows IoT Core, and others. Arduino and Raspberry Pi
complete the platform level of the full hardware stack.

Unlike the Arduino, the Raspberry Pi was never really designed as a
platform to be used by developers. However, at $35, it made single-
board computing accessible, and it was months after its release
before supply caught up with demand. The release of the Raspberry
Pi Zero, at $5, was met with a similar rush. Supply still hasn’t caught
up with demand. While not optimized for development, the board
was good enough and cheap enough to build a community around
it.

With Arduino and Raspberry Pi, the choice of prototyping platform
was simple. If you wanted to talk to arbitrary bits of electronics,
your best bet was to buy an Arduino microcontroller board; if you
needed the power of an ARM-based board and wanted to run Linux,
Raspberry Pi was the best option. If you needed both, you could run
a USB cable between them.

The story could have ended there, but it doesn’t.

The New Platforms
Prototyping platforms are becoming more expansive. It’s cheap to
add radios to boards, and some platform builders have taken this
very far with “kitchen sink” boards. These platforms take the atti‐
tude that if one radio is good, another is better. If you can cram
another sensor onto the board with only a minor increase in the bill
of materials, then another one again seems like a good idea.

On the other hand, we’re seeing the emergence of new “use every‐
where” boards, which have minimal features but are cheap, have
onboard networking of some sort or another—usually Bluetooth LE

14 | Chapter 3: Your Developers’ User Experience

or WiFi—and are usually optimized for low-power environments.
Typically they also come in small form factors.

The “kitchen sink” board
The great thing about using Raspberry Pi or Arduino is that lots of
developers have them, and there is a great deal of community sup‐
port around them. But specialized boards, like MediaTek’s LinkIt
One, have so many features, they can be hard to resist. The LinkIt
One for instance supports GSM/GPRS, WiFi, Bluetooth BR/EDR
and LE and has an onboard GPS, as well as GPIO, I2C, SPI, UART
and Grove connector support.

Boards like these are designed to be a platform for prototyping IoT
devices, but the boards themselves are not designed to be deployed
as IoT devices. Right now a lot of the work being done inside the
IoT community is exactly this, to build platforms, developing some‐
thing that other developers will build on.

The “use everywhere” board
The poster child for affordable, easy-to-deploy IoT boards is the
ESP8266. The Espressif ESP8266 SoC was originally released as a
serial-to-WiFi bridge for another microcontroller, like an Arduino.

But it cost less than $2, and as a result a somewhat bewildering
selection of module and breakout boards have been produced. It was
so cheap people started looking at it rather closely and discovered
that it is a full microcontroller in its own right.

In fact, it’s a very capable 80 MHz microcontroller based around a
Tensilica Xtensa LX3 core with WiFi support, both as client and as
an access point, supporting 802.11 b/g/n protocols at 2.4 GHz and
WPA/WPA2 with a full onboard TCP/IP stack with DNS support. It
has GPIO, I2C, I2S, SPI, and PWM support. It also has a 10-bit
ADC.

Most of these “use everywhere” boards are designed with small form
factors and low power requirements. In almost all cases, they also
come with advanced power management capabilities and the ability
of sleep (and wake) based on external interrupts.

These boards exist in a very different niche than the “kitchen sink”
boards being developed as platforms for experimentation. On the
one hand, “kitchen sink” boards provide infrastructure for already-

The Two Platforms | 15

identified IoT niches, such as remote distributed sensor networks.
On the other hand, they are generally too expensive in single-unit
quantities to be viable deployment platforms. However, “kitchen
sink” boards are often based on reference designs that chip vendors
provide and can be invaluable prototyping tools.

You Won’t Program to the Platform
The Arduino software has been expanded by its makers and their
competitors to go beyond the initial 8-bit microcontroller it sup‐
ported to ARM, x86, and other boards. Large chip makers, like
Texas Instruments with its LaunchPad boards based around its
MSP430 processor, have gone out of their way to provide Arduino-
compatible development environments in an attempt to capture the
Arduino developer community.

So even if you’re not using an Arduino, you can prototype on
another platform with the same programming language and libra‐
ries; the ESP8266 and LinkIt ONE are both examples of boards that
you can program with the Arduino IDE.

The upshot is that connected device developers can reach for a
Raspberry Pi, Arduino, or any of dozens of boards when prototyp‐
ing, and won’t have any shortage of developers or knowledge to
draw upon. And when it comes time to bring a device to mass pro‐
duction, the path from one prototyping board to many manufac‐
tured units is well understood, even if you’re a different chip than
what powers the Arduino or Raspberry Pi.

But at the end of the day, your Arduino code is just C++ running on
top of some libraries and macros that simplify your code and make
it possible for the same source code to compile to multiple chipsets.
With Raspberry Pi, you’re using the same Linux software develop‐
ment tools that you use on desktop machines or servers.

If you stick with Linux on single-board computing platforms like
the Pi, and the Arduino IDE on all the bare-metal boards, it will be
hard to go wrong. You’ll end up with a prototype that has portable
code that can be deployed to many different platforms.

16 | Chapter 3: Your Developers’ User Experience

Talking to the Cloud
An IoT device does not necessarily need to connect directly to the
Internet. However, while a smart, connected device can operate in a
standalone fashion, or form part of a local (possibly mesh) network,
most connect outward to the cloud in some fashion.

Notwithstanding our discussion in “Local, Edge, or Cloud?” on page
1, the architecture of most connected devices is similar: there is the
thing itself, an application running on a computer or gateway device
that controls the thing, and a cloud service that backs both.

To the Cloud
There are three main models of cloud computing: public, private,
and hybrid. A public cloud is one in which services and infrastruc‐
ture is provided by a specialist cloud company. A private cloud is
one where services and infrastructure, the machines the services are
running on, are owned and maintained by your own company. A
hybrid cloud is a mix of public and private cloud infrastructure.

There’s no reason the cloud components of a device need to be tied
to the company that built it. There’s nothing to stop companies from
creating devices that will self-deploy the cloud capability the device
needs directly to the customer’s cloud provider of choice. This way,
customers can pay for their own cloud usage but also migrate the
device’s cloud components between different providers as needed.

Talking to the Cloud | 17

CHAPTER 4

The Physical Environment

At the prototyping stage, the physical environment your device
operates in is fairly benign: an air-conditioned office or a lab. How‐
ever, once out in the world, your final product may face an unforgiv‐
ing environment: dust, vibration, exposure to elements, and even
wear and tear from users.

Physical Environment
When designing the prototype, it’s important to consider where it
will eventually be installed. Will it be inside or outside? If inside,
what sort of environment will it face? While an office environment
may be temperature regulated, a factory floor may suffer extremes of
heat or cold. If installed outside, there will be a large variation in
temperature over the course of a year, or even over the course of
each day. The device needs to be able to cope with the expected
maximum and minimum temperature extremes and rapid variations
between extremes.

Beyond the temperature, your device may have to face other factors.
Perhaps your device’s operating environment is subject to moisture
and dust. If so, the device enclosure needs to be sealed against water
ingress, with external physical ports covered for when they are not
in use.

When your prototype has progressed beyond the breadboard stage,
it’s important to take it to the physical environment in which it will
normally operate.

19

Consider the Enclosure
Thanks to advanced manufacturing technology, it’s become easy,
and scalable to a certain point, to manufacture one, one hundred, or
even one thousand of something. The tools that now make proto‐
typing easier—tools like 3D printers, CNC mills, and laser cutters—
scale poorly beyond thousands of units. But most contract manufac‐
turers regard orders of thousands, or even tens of thousands, of
units as “low volume” or “short runs” and charge a premium.

For production runs of consumer products parts, 3D printing or
CNC milling is usually too slow. But for industrial scenarios, where
you might only build dozens of devices at a time, and where there is
a lot of customization, these advanced manufacturing solutions
might be just right.

For runs of hundreds or thousands, there are companies, like Proto‐
mold, that do provide service to companies needing small orders.
They typically use molds made from aluminum, rather than steel, so
your tooling cost is typically less expensive. However, these sorts of
molds will have much shorter lifespans, which won’t be a problem if
you need to customize each run anyhow.

Good contract manufacturers are hard to find. If you are manufac‐
turing in larger quantities, ask your potential manufacturers to do a
detailed design for manufacturability (DFM) analysis of your prod‐
uct. They should be able to take your Gerber, CAD, and other design
files and give you detailed feedback about how each part will be
made, and any potential issues around building them, as well as
ways to change the design to make it easier to manufacture. This can
potentially save a large amount of money by cutting manufacturing
times.

Heating and Cooling
Electronics generate heat. When overheating, some processors will
throttle performance to stay within their ideal temperature range.
Some processors will operate so far below their normal performance
level that you’ll notice the speed difference.

In some situations, electronics used in embedded devices can make
do with passive cooling using small heat sinks. But in other situa‐
tions, active cooling may be necessary. While fan cooling is
traditionally thought of as noisy—laptops and microwave ovens

20 | Chapter 4: The Physical Environment

https://www.protolabs.com/
https://www.protolabs.com/

spring to mind—operating a modern, low-speed (under 2,000 RPM)
DC-powered ball-bearing brushless fan at the low end of its voltage
range will result in sound levels less that 16 to 18 dB. At these levels,
the fan noise is inaudible from more than a meter away.

Even if operated at low speeds, small fans also may lead to dust
accumulation inside the device, which can reduce cooling efficiency.

Alternatives to fans do exist. If you need to move large amounts of
heat away from a component, you could use a Peltier cooler. Con‐
versely, in those circumstances where the electronics need to be
heated, rather than cooled, a Peltier heater can be used. The need to
heat the electronics can occur if the device is meant to operate
unprotected at high altitudes, or in colder climates. However, care
must be taken when designing heating systems, as the electronics
will self-heat in many circumstances. Left “on,” many systems will
generate enough heat from operation to stay in operation if pro‐
tected from other factors by a good enclosure.

Enclosures
While human interface requirements will often drive the look and
feel of an enclosure, the underlying requirements of the environ‐
ment in which the device operates have to be taken into account.

A good place to start when thinking about designing enclosures,
especially for industrial use, are companies like Polycase, which
stocks a range of pre-built plastic enclosures and may be able to cus‐
tomize them with cutouts for little additional cost.

If the device is to operate for extended periods in an isolated loca‐
tion, you may wish to think about adding additional environmental
sensors inside your enclosure to provide a self-monitoring capability
to your device. You may even need to enable it to “call for help” if it
determines that conditions are starting to get outside of its operating
range before a failure occurs. A machine learning platform such as
ThingWorx Analytics can apply machine learning to anomaly detec‐
tion.

Enclosures | 21

http://polycase.com

Power Requirements
The main consideration regarding power requirements is whether
the device will operate on or off the power grid. If the device is
designed to operate on electrical grid power, then considerations
must be given to power efficiency (an inefficient power supply will
waste money and generate excess heat).

If the device is to operate off grid, the required battery life will be the
driving factor behind many design decisions. Large batteries will not
only heavily influence the size and weight of the device, but they are
also expensive and will have a dramatic influence on the bill-of-
material cost of the device. Shipping costs may also be affected, as
some shipping methods cannot be used with some commonly used
batteries such as Lithium-ion. If you will be using solar panels with
rechargeable batteries, you need to factor those into the design.

The primary power drain for most connected devices will be its
radio. Therefore, anything you can do to reduce this can in turn lead
directly back to a smaller battery, and lower bill-of-material costs.
The choice of radio may well be determined by the power require‐
ments. For instance, typically Bluetooth LE radios operate with
power draws of less than 15 mA, while WiFi radios more typically
require from 80 to 200 mA to operate. That can make a dramatic
difference to the power consumption of a device.

Deep Sleep and Duty Cycle
In practice, many connected devices do not need to be connected to
the Internet at all times. Therefore one common practice when
working with “use everywhere” boards (discussed on page 15),
which have often been designed to be used off-grid, is to use the
deep sleep capabilities of the microprocessor.

For instance, the power consumption of the ESP8266 SoC drops
from a typical 80 mA in operation, down to well under 10 mA while
in sleep mode. This figure can be brought (much) lower by eliminat‐
ing power-hungry additions like power LEDs attached to many of
the breakout boards using the chip, down into the μA range. Using a
10 percent duty cycle and the sleep capabilities of the ESP8266
means that a 200 mA battery, which would normally be exhausted in
just over 2 hours of normal operation, can be stretched to last over a

22 | Chapter 4: The Physical Environment

day. If deployed outside, even a small solar panel can be used to keep
the battery topped off, allowing for long duration operation of the
device.

Some chips, like the ESP8266, include wake-from-sleep on interrupt
capability. With this feature, battery life can be extended even longer
as remote devices can be woken up only if “something interesting”
happens.

Connectivity
One issue that usually won’t be encountered by your prototypes is a
hostile radio environment. WiFi, Bluetooth, ZigBee radios, and sev‐
eral other standards all operate at or around the 2.4 GHz bands.
This means that in deployment where there are lots of radios in
operation, your device might suffer from poor throughput or other
connectivity issues. To some extent this can be alleviated by intelli‐
gently choosing bands that are uncongested, but in the end there is
only so much that can be done.

You therefore may have to consider communications protocols that
are robust against data loss and disruption. The Space Communica‐
tions and Networking team at NASA has done a lot of informative
work on disruption tolerant networking (DTN) standards. In addi‐
tion to the basic store-and-forward internetworking service, DTN
also provides efficient reliability, security, in-order delivery, dupli‐
cate suppression, class of service (prioritization), remote manage‐
ment, rate buffering, and data accounting, all over possibly
asymmetric and time-disjoint paths. Applications including file
transfer, messaging, and streaming audio and video can all be imple‐
mented on top of DTN.

Another issue which may affect connectivity of your device includes
accounting for motion. Is the device statically installed or in a mova‐
ble enclosure? Or is it installed in a location that will itself move
(e.g., under the hood of a truck)? If the device is intended to move,
then DTN may prove to be a viable option, or alternatively more
than one radio may be required to give multiple routes out to the
Internet. For example, primary WiFi networking may be shut down
when the connected device detects that it has left the area of WiFi
coverage and a backup WAN connection enabled (see “Wide Area
Networks” on page 5 for options). If available, a low-powered secon‐
dary WAN radio is preferable. (The Netherlands has just become the

Connectivity | 23

first country to roll out a low data rate [LoRa] mobile communica‐
tions network throughout the country.)

Storage
Beyond connectivity there is also the issue of local storage. In a
unique (for modern times) situation, hardware resources are scarce
on embedded platforms. How much application memory (RAM)
and persistent storage (e.g., flash memory) is needed by your use
case? If you make use of DTN, will longer term storage increase due
to caching? It is difficult to discuss storage in general terms, as the
need for onboard storage will vary dramatically with usage, but it
should be factored into your design from the start, using estimates
of your projected data throughput.

Where Does the Data Go?
When thinking about storage you should also consider how and
where the data is going to be processed. While it may seem initially
convenient to send all the data off to a remote cloud for analysis and
storage, as the number of devices scales, that can become on oner‐
ous burden. An additional consideration is that you never have bet‐
ter context for data than at the moment of collection.
Reconstructing that context later (or elsewhere) tends to be expen‐
sive, if not outright impossible. Instead of streaming every bit of
information up to the cloud, make as many decisions as you can
locally (on the device), process the data as much as possible without
losing important details, and send only the data you need up to the
cloud. This will not only save energy, but will save any costs associ‐
ated with data transfer (which is particularly important when deal‐
ing with a cellular connection).

24 | Chapter 4: The Physical Environment

CHAPTER 5

Security Is Your Job

Security has to be one of the first things you consider when you
design a connected device. Customers are far more sensitive about
data generated from things they can touch and handle than they
ever have been about data created on the traditional Web. Big data is
all very well when it is harvested quietly, silently, and stealthily,
behind the scenes on the Web. Because, to a lot of people, the digital
Internet still isn’t as real as the outside world. But given the IoT’s
connection between the digital and physical, the stakes are high.

Ignoring security for a connected device, or even leaving it until
later in the development process, is a mistake. It needs to be engi‐
neered into your device from the start. These seemingly smart devi‐
ces are attractive to hackers because for a lot of manufacturers
security is still viewed as an afterthought.

A Unique Security Problem
Even for devices with good security, the IoT presents a unique secu‐
rity problem. In the past, a great deal of computer security has relied
on attackers not having physical access to the computer, but with an
IoT that’s the point—with small devices spread all over the office,
factory, and more, it opens up a whole new can of security worms.
This physical vulnerability of IoT devices means that attackers can
leverage their access to a smart device to gain further access to a cor‐
porate network, and potentially compromise much more than just a
single device.

25

Authentication and Authorization
When you log on to a device with a user name and password, you
are authenticating. However, this is different than authorization.
Authorization is the process of verifying that you should have access
to something. One of the ongoing problems in computer security is
that often these two very different concepts are pushed together into
a single scheme. This is exacerbated in the case of smart devices, as
many of the schemes we’re accustomed to—the ubiquitous user‐
name and password of the digital Internet—no longer work for
devices without a screen. The visual feedback to users of the lock
icon in their web browser’s location bar, reassuring them of a secure
connection between them and the cloud, is also absent.

However, the features that make smart devices powerful also make
them a new vector for verifying our identity and authenticating us,
both to itself and the network of devices around it.

We need to consider how systems of devices, rather than a single
device, should be authenticated.

The Internet of Things and the Industrial
Internet
While the Industrial Internet has its roots in the SCADA systems of
the early 1960s, the IoT has its roots in the web architectures of the
dot-com boom. The clash of those cultures and architectures may
well contribute to dangerous security problems.

The Industrial Internet isn’t necessarily about connecting big
machines to the public Internet; rather, it refers to machines becom‐
ing nodes on pervasive networks that use open protocols—there‐
fore, Internet-like behavior follows. These behaviors occur because a
lot of things become possible if the network can just be assumed… if
connectivity can be assumed.

Earlier systems that tie together decentralized facilities were
designed to be robust, easily operated, and repaired, but not neces‐
sarily secure. To be fair, such systems were never intended to be con‐
nected to public network. Unfortunately, this hasn’t stopped people
taking legacy systems and connecting them to Internet, often by
employing a serial-to-WiFi bridge that plugs right into a legacy
RS-232 port, exposing devices that were never meant to be exposed.

26 | Chapter 5: Security Is Your Job

There’s a big temptation to do so: it makes things a lot easier, and it
looks powerful. Unfortunately, by virtualizing access to serial ports,
and exposing them as IoT edge devices, many large systems that
drive large-scale machinery are directly exposed to attack.

Stuxnet
Stuxnet was the first of a new breed of malicious code. It attacked in
three phases. First, it targeted Microsoft Windows machines and
networks, replicating itself. Then it sought out Siemens Step 7 soft‐
ware, which is a bit of Windows-based software used for industrial
control systems, before finally compromising the programmable
logic controllers (PLCs) attached to those boxes. But crucially, this
would only happen if they were operating a very small range of
variable-frequency drives: centrifuges, in other words. The worm’s
authors could thus spy on the industrial systems and then cause
these fast-spinning centrifuges to tear themselves apart.

Now most speculation identifies Stuxnet’s target as Iranian nuclear
plants carrying out uranium enrichment: as many as 60 percent of
the identified infected machines were in Iran, and the complexity of
the worm implies that a nation-state was behind it.

However, Stuxnet was not a one-off or an aberration. It was a high-
profile flag for what’s coming as more and more sensors and actua‐
tors are put on public-facing networks. Most of these are going to be
much softer targets than going after a IR-1 centrifuge operating with
uranium hexafluoride. The next big attack will almost inevitably
trade sophistication for scale.

Broken Firmware
One potentially serious problem with many of today’s smart devices
is that the high-level “smarts” often sit on top of the same silicon as
other devices.

Because consumer device exploits are generally publicized more
than privately deployed enterprise exploits, we’ll look at examples
from the consumer space.

Both the Fitbit Aria WiFi bathroom scales and the Ring smart door‐
bell make use of a WiFi module produced by GainSpan.

Broken Firmware | 27

http://www.gainspan.com/gs2011m

Pen Test Partners discovered a vulnerability in the firmware of the
GainSpan module used by the Aria scales. It allowed attackers to
retrieve the SSID and WPA PSK of the owner’s network by placing
the scales into setup mode, which can be simply done by pressing
the reset button on the bottom of the scales, connecting to the access
point (AP) the scales create when in this mode, and retrieving the
information from a standard GainSpan firmware–provided end‐
point.

The same firm discovered a similar vulnerability in the Ring Door‐
bell. Because the Ring Doorbell is mounted outside a facility, rather
than in a bathroom, the vulnerability in this case was much more
serious. Ring patched the vulnerability immediately when notified,
but the device still exposes a number of pages left from the Gain‐
Span SDK.

These cases show the potential security problems when dealing with
off-the-shelf modular hardware. Very quickly, a vendor’s error can
become your worst nightmare. Most connected devices will be built
from standard modules, as developing proprietary silicon is far
beyond the capabilities of almost any company considering building
a device. However, these modules do come with their own vulnera‐
bilities. In the case of GainSpan WiFi, the original manufacturer
regarded this as normal operation of its SDK and advises all manu‐
facturers to remove these endpoints before production.

Fixing these sorts of problems once a significant number of units are
in the wild can be problematic: most users can’t or won’t perform
firmware updates—few will be aware when such updates may be
necessary. You will find bugs in your connected device after ship‐
ping begins. Sometimes these bugs can lead to large exposure surfa‐
ces for attacks and will need to be fixed. While there are companies
like Resin.io that are working to simplify automated firmware
update deployment to distributed devices, right now the burden on
doing so lies squarely with the manufacturer of the device.

Fixing the Firmware?
The time to fix firmware in a product that is massively distributed
can be protracted, even if the manufacturer is proactive in fixing the
problems. Depending how the device interacts with the cloud, or
how thoroughly the security scheme is integrated into the SDK,
making the required changes can take a great deal of time.

28 | Chapter 5: Security Is Your Job

http://bit.ly/2fDJqSJ
http://bit.ly/2fmiJCJ
http://bit.ly/2fmiJCJ
https://www.exploitee.rs/index.php/Ring_Doorbell
https://www.exploitee.rs/index.php/Ring_Doorbell
https://resin.io/

1 In fact, working with Sandeep Mistry, Alasdair did this twice with the CES Scavenger
Hunt. See “Hacking the CES Scavenger Hunt” and “Hacking the CES Scavenger Hunt
for a Second Time” for details.

2 See “Once an Altoids Tin, Now a Pinhole Camera…”.

At the start of 2014, using a combined approach investigation of the
Estimote Bluetooth LE beacon SDK proved that the beacons were
easily reconfigurable in the field by unauthorized third-party attack‐
ers. The implications of that were fairly far reaching. If someone
maliciously changes the iBeacon Major or Minor characteristic of a
beacon, any consumer application configured to use that particular
beacon will stop working. The beacons must be configured with a
pre-defined identity to trigger the correct behavior inside the cus‐
tomer’s own application when a device comes into proximity of the
beacon.

Beyond that, you could potentially configure a “fake” beacon to act
as an impostor of another beacon belonging to a retail chain, poten‐
tially gaining access to promotions, gift cards, and other location-
dependent goodies tied to the beacon you’re impersonating.1

A year and a half later, in the wake of Google’s announcement of its
new beacon standard Eddystone, the Estimote beacons were upda‐
ted. However, despite changes to its SDK, the vulnerabilities discov‐
ered were still present in the beacon SDK. The added capabilities of
the Eddystone support made the presence of this vulnerability much
more critical. With a URL it is much easier to trick users into visit‐
ing a malicious web page, which could then automatically download
and install a root kit onto their device.

Once publicized it took Estimote a month to fix the vulnerability in
its firmware.2 Do you think you could develop, test, and roll out a fix
in one of your devices that quickly?

Reverse Engineering the Hardware
Dropping below the exposed software, and even below the firmware
level, physical access to the hardware means that it, too, is vulnera‐
ble. Many connected devices are put in production with a serial port
still on board. The pads on the PCB may no longer be connected to
a socket that is exposed on the outside of the case, but the traces still
exist on the board itself.

Reverse Engineering the Hardware | 29

http://bit.ly/ZaTZ7L
http://bit.ly/2eLZwft
http://bit.ly/2eLZwft
http://bit.ly/2ekYrNd
http://bit.ly/XFFw2l
http://bit.ly/XFFw2l
http://bit.ly/2fZxoHE
http://bit.ly/2fZxoHE

While not trivial, it’s perfectly possible to use these vestigial serial
ports—left by the engineers that designed the board for debug and
(possibly) technical support purposes—to reverse engineer the
device. Bypassing any high-level security, these ports often give
attackers direct access into the heart of the device, its firmware, and
even the data flows (SPI traffic, for instance) between pieces of hard‐
ware.

Beware What You Put in Production
You should be very mindful of the hardware that you put into pro‐
duction. While it’s tempting to leave debugging ports on your board
when it goes into production, and there may be good reasons why it
should go into production that way, you must be careful about how
and what it can access.

As you progress in the prototyping process, you need to carefully
distinguish throwaway prototypes from the intermediate prototypes
that bring you closer to your final product, making adjustments as
necessary. Prototyping using off-the-shelf hardware, like the Rasp‐
berry Pi, can often lead to small-scale production runs using the
same hardware as your prototype. Unfortunately, people rarely
remember to update the software on these off-the-shelf devices, and
the device accumulates well-known vulnerabilities over time.

If you deploy a device using the Raspberry Pi or a platform similar
to the Raspberry Pi that runs a full Linux distribution, you need a
plan for pushing updates to the device, and you need a way to dis‐
tribute emergency updates with great haste. A botnet attack can
make short work of exploiting thousands of devices shortly after a
new vulnerability is disclosed, as the Carna botnet proved.

Built by an anonymous researcher to measure the extent of the
Internet, the Carna botnet was designed to attack small embedded
systems—the precursors to today’s IoT devices—rather than desktop
computers. The botnet made use of almost trivially exploitable secu‐
rity vulnerabilities, such as routers using the default password, to
build a large-scale distributed port scanner. While a solid security
strategy is necessary when building a connected device, the success
of the Carna botnet is telling: simple default passwords gave its
author access to hundreds of thousands of consumer devices, as well
as tens of thousands of industrial devices.

30 | Chapter 5: Security Is Your Job

The author documented the botnet in an online paper. As the
author of the botnet concluded, “A lot of devices and services we
have seen during our research should never be connected to the
public Internet at all. As a rule of thumb, if you believe that ‘nobody
would connect that to the Internet, really nobody,’ there are at least
1,000 people who did.”

Reverse Engineering the Hardware | 31

http://internetcensus2012.bitbucket.org/paper.html

1 Particle offer a series of purchase options depending on the scale you intend to use
their product; see “Particle Wholesale for Businesses”.

CHAPTER 6

Time to Market Versus
Common Sense

As technology matures, it becomes cheaper. The ubiquity of the
ARM processor, used in pretty much every smartphone, has dra‐
matically dropped the price of computing. This rapid drop in the
price of computing platforms at the low end has made prototyping
much easier and has enabled a generation of new prototypes to be
built.

Right now the proliferation of the “kitchen sink” developer boards
(discussed on page 15) means it is easier than ever to prototype a
product—however prototypes are not products. They’re relatively
expensive, often have large form factors, and can’t be integrated into
products. They’re intended to aid development, not the core of your
product, no matter what some manufacturers claim.

There are some exceptions, such as companies that
offer wireless modules that you can integrate into your
own products. These include the Particle P0 and P1,
which provide the core functionality that drives their
larger development boards (in Particle’s case, their
Photon board). These modules offer a way to take your
prototype and create a custom PCB and reuse the code
from your prototype without changes.1

33

https://www.particle.io/scale
https://www.particle.io/prototype#p0-and-p1
https://www.particle.io/prototype#photon

The “use everywhere” boards (discussed on page 15) are cheap, low
powered, and can indeed be used, if not everywhere, then many
places. Even if you don’t use the boards directly in your product, you
can easily adapt them to your design. For example, the design of an
ESP8266 breakout board that might run you $2 can be easily inte‐
grated into your own device design. At that point, you’re just paying
for the ESP8266 modules, which are much cheaper than the break‐
out boards.

It’s at this stage, when it’s time to go to market, that you can fall into
the temptation of using your prototype as your product blueprint.
But that will have consequences.

Off-the-Shelf Components
If you’re manufacturing in low volume, you may well want to choose
to base your connected device around an off-the-shelf board. While
typically more expensive per unit than building your own custom
PCB, it’s possible you can cut a large amount of up-front develop‐
ment time (and cost) by following this route. Taking an existing
board and customizing it, or using a board designed to scale directly
into production, such as the Particle Photon, means that your devel‐
opment time is spent adding the features that make your connected
device unique and valuable rather than reimplementing an underly‐
ing platform. In this case, your final product may look a lot like your
prototype.

What About the Prototype?
If your prototype is based around one of the existing single-board
computers (such as the Raspberry Pi) or a network-enabled micro‐
controller (such as the ESP8266 or the Particle Photon), it’s tempting
to continue with that into the production stage. As you move from
your initial prototypes, it’s important to take a step back and con‐
sider what it is you’re trying to build. This is especially true if your
prototypes were built around a “kitchen sink” board that will inevi‐
tably be large and expensive. While some of these boards can be cus‐
tomized—and ordered from their manufacturers in custom
(stripped) configurations, by removing parts to lower the bill-of-
materials costs—most cannot.

34 | Chapter 6: Time to Market Versus Common Sense

Managing Risk
There are two main types of risk when manufacturing a new prod‐
uct: technical and product risk. All hardware products share some
element of technical risk—engineering constraints (or the laws of
physics) might prevent you from being able to deliver the product.
Most startups are aware of this and manage the risk fairly well. But
fewer manage product risk. This is the risk that the product, once
delivered, will fail to live up to expectations. It will work, but it may
be unreliable; the look and feel of the product may be poor; or in
some other manner the user experience may be below expectations.

The amount of product risk that your device is subject to is nor‐
mally heavily dependent on how critical the device operation is to
the end customer. For instance, an automated irrigation system that
only polls the weather hourly may be less critical than a door lock
that only works correctly once per hour. If the plants have to wait an
hour for water, it’s not an inconvenience. But if employees can’t get
into the building, you’ll hear about it right away!

Failing Gracefully
Leslie Lamport, an early pioneer in distributed systems, said that “A
distributed system is one in which the failure of a computer you
didn’t even know existed can render your own computer unusable.”
By their very nature connected devices are distributed systems.
There is the smart thing itself, the computer (or smartphone) that
the user typically uses to interact with the device, and in many cases
a cloud system behind both of these.

To manage product risk successfully, especially in high-risk systems
where a small number of failures (say, one or two) over the lifetime
of the system can have a severe impact on safety or revenue, it’s
important to fail gracefully. A user should not be locked out of the
warehouse if there’s a power outage.

Unlike systems that live purely in the digital world, connected devi‐
ces live in the physical world, which means they are inherently unre‐
liable. That unreliability must be a factor in the design of any
connected system.

Managing Risk | 35

1 See Alasdair’s blog post “The Business of Things” for a discussion of current IoT busi‐
ness models.

CHAPTER 7

Conclusions

The connectivity for Internet-enabled devices is well established,
and the technology continues to mature at a rapid pace. Even so, we
are still in the very early days of working out guidelines for how we
should build connected devices.

Unlike software, there are few established patterns to follow in hard‐
ware, and most manufacturers are still feeling their way toward not
just how to build a connected device, but how to ship it and support
it afterward. The business models that supported the digital Internet
do not work well with the IoT.1

Going forward, you will need to make sure you completely address
the key life-cycle activities of a connected device. First, in the proto‐
typing of your device, you need to understand what the device will
do, establish a framework for iteration from prototype to final
device, and adopt the network architecture that optimizes for cost,
availability, and bandwidth needs.

Next, you will need to recognize your device is a platform for your
customers’ developers. At a minimum, someone will have to inte‐
grate it. More likely, they will have to engage in significant develop‐
ment and customization. Recognize this fact and embrace it, and
create affordances and entry points that let your customers build
something great.

37

https://www.oreilly.com/ideas/the-business-of-things

You’ll also need to understand the constraints of the physical envi‐
ronment the device will operate in. Your enclosure is your first line
of defense against a harsh environment, but you also have to think
about how you will get power to your device, and how it will physi‐
cally handle connectivity.

Amid all the other considerations, security is the biggest challenge,
if only because it is ongoing. After a device is deployed, keeping it
secure and protected against vulnerabilities becomes your duty, to
both your customers and their customers.

Finally, you need to balance time to market and the various product
risks at key stages of the manufacturing process. The choice of
whether to use the same modules in prototyping and production has
a big impact on time to market. The decisions you make along the
way to market will impact the risks you are subject to when your
device is in the field.

Building smart, connected devices gives you opportunities in prod‐
uct development and product management that have never existed
before. You can create products that deliver tremendous value to
your customer. And after the product is deployed, you and your cus‐
tomers end up being partners in your customers’ success. If you
build your smart, connected devices in a way that addresses cus‐
tomer needs, contains the building blocks that developers need,
offers ongoing security, and is physically constructed for the job, you
will create a virtuous cycle powered by the connections between
devices, people, and the cloud.

38 | Chapter 7: Conclusions

About the Authors
Alasdair Allan is a scientist, author, hacker, tinkerer, and co-
founder of a startup working on fixing the Internet of Things. He is
the author of a number of books, and from time to time, he also
stands in front of cameras. He is a contributing editor for MAKE
magazine and a contributor to the O’Reilly Radar. A few years ago,
he caused a privacy scandal by uncovering that your iPhone was
recording your location all the time. This caused several class action
lawsuits and a US Senate hearing. Several years on, he still isn’t sure
what to think about that. Alasdair is a former academic. As part of
his work, he built a distributed peer-to-peer network of telescopes,
which, acting autonomously, reactively scheduled observations of
time-critical events. Notable successes include contributing to the
detection of what—at the time—was the most distant object yet dis‐
covered.

Brian Jepson is an O’Reilly editor, hacker, and co-organizer of Prov‐
idence Geeks and the Rhode Island Mini Maker Faire. He’s also
active with AS220, a nonprofit arts center in Providence, Rhode
Island. AS220 gives Rhode Island artists uncensored and unjuried
forums for their work and also provides galleries, performance
space, fabrication facilities, and live/work space.

	Cover
	thingworx
	Copyright
	Table of Contents
	Preface
	Products, Platforms, and Strategies

	Chapter 1. Where Does Your Product Sit?
	Project Requirements
	Local, Edge, or Cloud?

	Prioritizing Your Decisions
	Designing the Minimum Viable Product
	The Standards Problem
	The Big Three
	Mesh Networks
	Wide Area Networks

	Chapter 2. Starting with One
	Know Your Device’s Role
	Don’t Fall in Love with Your Parts Bin
	Creating a Bill of Materials
	Code and Hardware
	What About the Network?

	Chapter 3. Your Developers’ User Experience
	The Two Platforms
	The New Platforms

	You Won’t Program to the Platform
	Talking to the Cloud
	To the Cloud

	Chapter 4. The Physical Environment
	Physical Environment
	Consider the Enclosure
	Heating and Cooling

	Enclosures
	Power Requirements
	Deep Sleep and Duty Cycle
	Connectivity
	Storage
	Where Does the Data Go?

	Chapter 5. Security Is Your Job
	A Unique Security Problem
	Authentication and Authorization
	The Internet of Things and the Industrial Internet
	Stuxnet

	Broken Firmware
	Fixing the Firmware?

	Reverse Engineering the Hardware
	Beware What You Put in Production

	Chapter 6. Time to Market Versus Common Sense
	Off-the-Shelf Components
	What About the Prototype?
	Managing Risk
	Failing Gracefully

	Chapter 7. Conclusions
	About the Authors

