Disaster Recovery for Multi-Datacenter Apache Kafka Deployments
DESIGN, CONFIGURATION, FAILOVER, FAILBACK
Datacenter downtime and data loss can result in businesses losing a vast amount of revenue or entirely halting operations. To minimize the downtime and data loss resulting from a disaster, enterprises can create business continuity plans and disaster recovery strategies.
Download this white paper for a practical guide to configuring multiple Apache Kafka clusters so that if a disaster scenario strikes, you have a plan for failover, failback, and ultimately successful recovery.
Kafka: The Definitive Guide
Learn how to take full advantage of Apache KafkaTM, the distributed, publish-subscribe queue for handling real-time data feeds. With this comprehensive book, you’ll understand how Kafka works and how it’s designed.
Authors Neha Narkhede, Gwen Shapira, and Todd Palino show you how to deploy production Kafka clusters; secure, tune, and monitor them; write rock-solid applications that use Kafka; and build scalable stream-processing applications.
- Learn how Apache Kafka compares to other queues and where it fits in the big data ecosystem
- Dive into Kafka’s internal design
- Pick up best practices for developing applications that use Kafka
- Understand the best way to deploy Kafka in production monitoring, tuning, and maintenance tasks
- Learn how to secure a Kafka cluster
- Get detailed use-cases
2017 Apache Kafka Report
Learn more about how companies are using streaming platforms.
Over the past several years, organizations across many industries have discovered, and are filling, an increasingly important gap in their data infrastructure. It sits at the nexus of big data, data integration, and all of their data stores and applications – a gap that is being filled by streaming platforms like Apache Kafka.
Confluent has enjoyed a front row view as companies adopt streaming platforms to create new products, become more responsive to customers and make business decisions in real time. This survey focuses on why and how companies are using Apache Kafka and streaming data and the impact it has on their business.
Why Outsourcing Managed Web Services is Better for Your Business
Digital marketing and web design are increasingly competitive fields. New businesses open their virtual doors each day, amidst ever-increasing demand for sites offering engaging content and positive user experience.
These client demands combined with rapidly evolving technology increase the workload of firms struggling to stay current to ensure the needs and requirements of new and old clients alike can be met.
Download this whitepaper to learn how your business can benefit from outsourcing your managed web services:
5 Tips to Improve Your Website and Increase Sales
Retail e-commerce will reach $2.050 trillion this year - up 22.7% from 2015. That double digit growth will continue through 2019, reaching $3.578 trillion. That’s steady growth your business should be capitalizing on — but what if your business’ growth is limited by the performance of your website? Without the proper foundation and monitoring, a website can quickly become the reason consumers are clicking away. To ensure continued growth for your e-commerce business and avoid lost sales, your website needs to be optimized for speed, protected against downtime and traffic surges, and fully secured.
Use the following tips to talk to your IT department about how your website is performing.
Big Data Analytics Market Study
Based on survey methodology, this second Big Data Analytics Market Study from Dresner Advisory focuses upon the combination of analytical solutions within the Hadoop ecosystem, adding some new criteria and exploring changing market dynamics and user perceptions and plans.
You’ll also learn why Pentaho ranked among the top three Big Data Analytic vendors in the areas of infrastructure, data access, search, machine learning, and supported distributions.
Read the market study to learn:
- Top infrastructure choices, machine learning technologies and vendors for big data
- Ratings of technologies and platforms used in big data analytics
- Big data trends by industries, functions, and geographical regions
- The most popular big data use cases
*Pentaho, a Hitachi Group company, helps organizations harness value from all their data. Our open enterprise-class platform provides end-to-end data preparation, integration, and analytics.
Konzepte für den Erfolg mit Big Data
Erfahren Sie, wie Sie mit vier gängigen Big Data-Szenarios erfolgreich sein können: Data Warehouse-Optimierung, optimierte Datenaufbereitung, 360-Grad-Ansicht von Kunden, Monetarisierung von Daten.
Folgende Themen werden behandelt:
- Wie Sie Data Warehouse-Kosten reduzieren und die Leistung verbessern
- Wie mit einem agilen Datenintegrationsprozess die Entwicklungszeit für mapReduce um das 15-Fache gegenüber herkömmlichen Programmier- und Skripterstellungsverfahren reduziert werden kann
- Wie durch die Verknüpfung verschiedener operativer und Transaktions-Datenquellen zur Erstellung von On-Demand-Analyseansichten neue Wachstumsmöglichkeiten erschlossen werden können
- Wie durch die Verwendung interner Daten hochwertige Datensets für externe Kunden bereitgestellt werden können
Plans d’action pour une mise en oeuvre réussie des Big Data
Découvrez comment réussir avec quatre scénarios Big Data courants : Optimiser l’entrepôt de données, Optimiser une « raffinerie » de données, Avoir une vue à 360° des clients et Monétiser mes données.
Sommaire :
- Comment réduire le coût d’entreposage des données et améliorer les performances ?
- Comment la souplesse d’intégration des données permet-elle de diviser par 15 le temps de développement mapReduce par rapport aux processus manuels classiques de codage et d’écriture de scripts ?
- En quoi le mélange de plusieurs sources de données opérationnelles et transactionnelles permettant de créer, à la demande, une vue analytique de vos principaux points de contact client vous aide-t-il à réduire la perte de clients et à identifier de nouvelles opportunités de revenus ?
- Comment est-il possible d’utiliser des données internes pour proposer à des clients externes des jeux de données à forte valeur ajoutée ?
TDWI Best Practices Report: Improving Data Preparation for Business Analytics: (Sponsored by Pentaho*)
Want to get the data you need faster? If you’re trying to automate and scale your data preparation processes, this TDWI Best Practices Report is a must-read.
The TDWI report also examines how self-service data preparation will affect your operations, including how self-service data prep fits with visual analytics, data discovery, BI tools, and Hadoop.
Read the TDWI best practices report to learn how to:
- Establish smarter, more scalable, and better coordinated data prep processes
- Reduce the burden on IT through self-service, while ensuring data is appropriately governed
- Make better data-driven decisions
- Use the best of old and new worlds, leveraging data warehouses and Hadoop at the same time
*Pentaho, a Hitachi Group company, helps organizations harness value from all their data. Our open enterprise-class platform provides end-to-end data preparation, integration, and analytics.
Avoid Pitfalls When Implementing Business Intelligence Software
FullStack BI Vs. Data Visualization
How To Build Business Intelligence Software Into Your 2017 Budget
5 Signs It’s Time You Move Toward A Business Intelligence Solution
Faster, More Accurate Decisions with IT Analytics
The rise of the digital enterprise has created an explosion of valuable, yet unharnessed data for IT organizations. Traditional IT tools and processes, founded on the notion of control and management, are unable to support the speed and agility requirements of the digital enterprise. IT organizations must reengineer their approach from traditional analytics and reporting to adaptive, real-time digital service analytics.
Take more accurate decisions with IT Analytics, download this paper.