Data Visualization: When Data Speaks Business

See why organizations are increasingly recognizing that to be competitive, they need to be data-driven, for which they need not only strong analytics and BI capabilities at all decision levels, but also an effective way to transform data into information and ensure its optimal delivery.
Get Whitepaper

Follow the Money: Big Data ROI and Inline Analytics

Wikibon conducted in-depth interviews with organizations that had achieved Big Data success and high rates of returns. These interviews determined an important generality: that Big Data winners focused on operationalizing and automating their Big Data projects. They used Inline Analytics to drive algorithms that directly connected to and facilitated automatic change in the operational systems-of-record. These algorithms were usually developed and supported by data tables derived using Deep Data Analytics from Big Data Hadoop systems and/or data warehouses. Instead of focusing on enlightening the few with pretty historical graphs, successful players focused on changing the operational systems for everybody and managed the feedback and improvement process from the company as a whole.
Get Whitepaper

Is your Database Ready for the Era of Big Data?

You need a database designed to control both the infrastructure and personnel costs that form the IT budget. The next generation of IBM DB2 helps organizations get more value from their big data to improve their IT economics. Major innovations provide out-of-the-box performance gains that go beyond the limitations of in-memory-only systems to support decision making at the speed of business.
Get Whitepaper

In-Memory Databases Put the Action in Actionable Insights

In order to derive business value from Big Data, practitioners must have the means to quickly (as in sub-milliseconds) analyze data, derive actionable insights from that analysis, and execute the recommended actions. While Hadoop is ideal for storing and processing large volumes of data affordably, it is less suited to this type of real-time operational analytics, or Inline Analytics. For these types of workloads, a different style of computing is required. The answer is in-memory databases.
Get Whitepaper

Sauvegarde de VMs : Veeam et les outils de sauvegarde traditionnelle

Les outils de sauvegarde traditionnelle ne répondent plus aux besoins de continuité d’activité (Always-On Business™) d'aujourd'hui. En utilisant les outils conçus pour les sauvegardes physiques cela peut prendre des heures voir même parfois des jours pour sauvegarder vos données et applications et cela ne vous permet pas d’atteindre vos objectifs de temps de récupération (RTO) et de point de restauration (RPO). Veeam® Backup & Replication™ assure la disponibilité du Data Center moderne™ en aidant les organisations à atteindre des objectifs de temps et de point de restauration (RTPO ™) de moins de 15 minutes pour toutes les applications et les données.
Get Whitepaper

VM-Backup: Veeam vs. herkömmliche Backup-Tools

Herkömmliche Backup-Tools werden den heutigen Anforderungen an das Always-On Business™ nicht gerecht. Sie wurden für physische Backups entwickelt und brauchen oft Stunden oder sogar Tage, um Vorgaben für Wiederherstellungszeiten (Recovery Time Objectives, RTOs) und Wiederherstellungspunkte (Recovery Point Objectives, RPOs) zu erfüllen. Veeam® Backup & Replication™ unterstützt Unternehmen unter dem Motto Availability for the Modern Data Center™ dabei, Vorgaben für Wiederherstellungszeiten und -punkte (RTPO™) von weniger als 15 Minuten für ALLE Anwendungen und Daten zu realisieren.
Get Whitepaper